Homobifunctional PEG Derivatives

JenKemBeijingRnDJenKem Technology provides high quality activated homobifunctional polyethylene glycol derivatives (PEGs) with high purity and low polydispersity.

JenKem Technology’s homobifunctional PEG derivatives have numerous applications as cross-linkers, including PEGylation of proteins and peptides, or nanoparticle and surface modifications [1, 2]. Homobifunctional PEG derivatives have the general structure: X―PEG―X, where X is a functional reactive group.

Homobifunctional PEG products with molecular weights and functional groups not listed in our online catalog may be available by custom synthesis. Please inquire at tech@jenkemusa.com about pricing and availability of custom synthesis homofunctional PEGs. For global distribution, please visit link. To order directly from JenKem Technology:

CM-PEG-CM ≥ 95% PEG (Acetic Acid)2 (PEG dicarboxyl, PEG diacetic acid, CM-PEG-CM, COOH-PEG-COOH, Carboxyl PEG Carboxyl) Amino reactive PEG crosslinker. [1-5]
Monodisperse CM-PEG8-CM

Monodisperse CM-PEG12-CM

≥ 95% Discrete PEG8 (Acetic Acid)2 and PEG12 (Acetic Acid)2  (Discrete PEG dicarboxyl, PEG diacetic acid, CM-PEG-CM, COOH-PEG-COOH)  Monodisperse discrete amino reactive PEG crosslinker.
Monodisperse PA-PEG8-PA

Monodisperse PA-PEG12-PA

≥ 95% Discrete PEG8 (Propionic Acid)2 and PEG12 (Propionic acid)2 (Monodisperse discrete PEG8 and PEG 12 dipropionic acid, PA-PEG PA, PEG dipropanoic acid). Monodisperse discrete amino reactive PEG crosslinker.
SCM-PEG-SCM ≥ 95% SCM PEG SCM (PEG diNHS, PEG diSuccinimidyl Carboxymethyl Ester, SCM-PEG-SCM, NHS-PEG-NHS, or PEG diSCM).  Amino reactive PEG diNHS ester crosslinker for lysine(s) or N-terminal amine. [6-7]
SS-PEG-SS > 90% SS PEG SS (PEG diSuccinimidyl Succinate Ester, SS-PEG-SS, or PEG diSS).  Amino reactive PEG diNHS ester crosslinker for lysine(s) or N-terminal amine, with cleavable linker.
NH2-PEG-NH2 ≥ 95% Amine PEG Amine (PEG diamine, PEG (Amine)2). Crosslinker PEG, attaches via stable linkages, such as amide, urethane, urea, secondary amine. [8-19]
Monodisperse NH2-PEG8-NH2

Monodisperse NH2-PEG12-NH2

≥ 95% Discrete PEG8 (Amine)2 and PEG12 (Amine)2 (Monodisperse PEG diamine, PEG (Amine)2). Crosslinker PEG, attaches via stable linkages, such as amide, urethane, urea, secondary amine.
MAL-PEG-MAL > 90% Maleimide PEG Maleimide (PEG dimaleimide, PEG(Maleimide)2). Selective crosslinker for thiol groups on cystein side chains. [20-24]
ACLT-PEG-ACLT ≥ 95% Acrylate-PEG-Acrylate (PEG-DA, PEG diacrylate, PEG (Acrylate)2). PEG crosslinker used in vinyl polymerization or co-polymerization. [25-30]
HS-PEG-SH ≥ 95% Thiol PEG Thiol (PEG dithiol, PEG(Thiol)2). Thiol reactive PEG crosslinker, reacts with HS groups on cysteine side chains under mild reaction conditions. [31-33]
VS-PEG-VS > 90% Vinylsulfone PEG Vinylsulfone (PEG-divinylsulfone, PEG (Vinylsulfone)2). Sulfhydryl reactive PEG crosslinker.[34-37]
TSO-PEG-TSO ≥ 90% Tosylate PEG Tosylate (diTosylate PEG, PEG diToluenesulfonyl , or PEG (Tosylate)2). Reactive homobifunctional PEG crosslinker employed for amine and thiol PEGylation
ALKYNE-PEG-ALKYNE > 90% Alkyne-PEG-Alkyne (diAcetylene PEG, di Propargyl PEG, PEG)Alkyne)2, or dialkyne PEG). Click PEG crosslinking reagent for reaction with azide groups
Monodisperse HO-PEG8-OH

Monodisperse HO-PEG9-OH

Monodisperse HO-PEG12-OH

> ≥95% Discrete PEG8 Dihydroxyl, PEG9 Dihydroxyl and PEG12-Dihydroxyl (HO-PEG8-OH, HO-PEG9-OH and HO-PEG12-OH)Monodisperse dihydroxyl PEG, dialcohol PEG). Monodisperse polyethylene glycol raw material.

3ARM, 4ARM, 6ARM, and 8ARM Homofunctional PEGs
multi-arm homofunctional PEGs

Linear, 3ARM, 4ARM, 6ARM, and 8ARM PEG Raw Materials (Hydroxyl PEGs)
PEG Raw Materials

1. Ji, F., et al., A Dual pH/Magnetic Responsive Nanocarrier Based on PEGylated Fe3O4 Nanoparticles for Doxorubicin Delivery, Journal of Nanoscience and Nanotechnology 2018, 18.7: 4464-4470.

2. Xiao, S., et al., Aptamer-mediated gene therapy enhanced antitumor activity against human hepatocellular carcinoma in vitro and in vivo, Journal of Controlled Release, 2017.

3. Jing, P., et al, Enhanced growth inhibition of prostate cancer in vitro and in vivo by a recombinant adenovirus-mediated dual-aptamer modified drug delivery system, Cancer Letters, 2016, V. 383(2), P. 230-242.

4. Xue, Y., et al., Quantifying thiol–gold interactions towards the efficient strength control, Nature communications. 2014 ;5.

5. Gajbhiye, V., et al., Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives. Nanoscale, 2014. 6(1): p. 521-31.

6. Walker, J.M., et al., Magnetically Triggered Radical-Generating Fe3O4 Nanoparticles for Biopolymer Restructuring: Application to the Extracellular Matrix, Chem. Mater., 2015, 27 (24), pp 8448–8456.

7. Inostroza-Brito, K.E., et al., Cross-linking of a Biopolymer-Peptide Co-Assembling System, Acta Biomaterialia, 2017.

8. Chen, X., et al., PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment, Journal of Colloid and Interface Science, 2017, V. 490, P. 542-552.

9. Jain, S., et al., Estradiol functionalized multi-walled carbon nanotubes as renovated strategy for efficient gene delivery, RSC Advances, 2016; 6(13):10792-801

10. Klippstein, R., et al., Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo, Small, 2015, 11: 4704–4722.

11. Mehdizadeh, M., et al., Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artificial cells, nanomedicine, and biotechnology. 2016:1.

12. Chen, N., et al., Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas, Journal of Colloid and Interface Science, 2015, Volume 457, Pages 27-34.

13. Liu, S., et al., Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization, Adv. Mater., 2015, DOI: 10.1002/adma.201500360.

14. Zhang, T., et al., Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer, Nanomedicine 2015, Vol. 10, No. 4 , Pages 573-587.

15. Cheng, L., et al., Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties, Colloids and Surfaces B: Biointerfaces, 2015, Volume 136, Pages 37-45.

16. Li, S., et al., Targeted imaging of brain gliomas using multifunctional Fe3O4/MnO nanoparticles, RSC Adv., 2015, 5, 33639-33645.

17. Chen, W., et al., Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery, RSC Adv., 2015, 5, 69307-69311.

18. Rubio, N., et al., Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide, ACS Applied Materials & Interfaces, 2015, 7 (34), 18920-18923.

19. Mou, J., et al., A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy, Theranostics, 2017; 7(6):1531-1542.

20. Azam, A., et al., Type III secretion as a generalizable strategy for the production of full-length biopolymer-forming proteins, Biotechnol. Bioeng. 2015, doi:10.1002/bit.25656.

21. Yu, W., et al., PEGylated recombinant human interferon-ω as a long-acting antiviral agent: Structure, antiviral activity and pharmacokinetics. Antiviral Research, 2014. 108: p. 142-147.

22. Tang, L., et al., Separation and detection of bis-maleimide-polyethylene glycol and mono-maleimide-polyethylene glycol by reversed-phase high pressure liquid chromatography, Journal of Chromatography A 2012, 1246, p: 117–122.

23. Soon, A.S.C., Exploiting fibrin knob:hole interactions for the control of fibrin polymerization, Georgia Institute of Technology, 2011.

24. Soon, A.S.C., et al., Modulation of fibrin matrix properties via knob:hole affinity interactions using peptide–PEG conjugates, Biomaterials, 2011, Volume 32, Issue 19, Pages 4406-4414.

25. Jiang, Z., et al., A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres. Journal of Materials Chemistry B. 2017; 5(1):173-80.

26. Liang, Y., et al., Controlled release of an anthrax toxin-neutralizing antibody from hydrolytically degradable polyethylene glycol hydrogels, Journal of Biomedical Materials Research Part A, 2016, Volume 104, Issue 1, pages 113–123.

27. Lilly, J.L., et al., Characterization of Molecular Transport in Ultrathin Hydrogel Coatings for Cellular Immunoprotection, Biomacromolecules 2015 16 (2), 541-549

28. Feng, Q., et al., Mechanically Resilient, Injectable, and Bioadhesive Supramolecular Gelatin Hydrogels Crosslinked by Weak Host-Guest Interactions Assist Cell Infiltration and In Situ Tissue Regeneration. Biomaterials. 2016.

29. Jing, P., In Vitro Hair Follicle Engineering, 2014, National University of Singapore.

30. Pan, J., Fabrication of a 3D hair follicle-like hydrogel by soft lithography,  J Biomed Mater Res Part A 2013 101(11):3159-69.

31. Kozai, T.D.Y, et al., Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights, Journal of Neuroscience Methods, 2016, Volume 258, Pages 46-55.

32. Sridhar, B. V., et al., Development of a Cellularly Degradable PEG Hydrogel to Promote Articular Cartilage Extracellular Matrix Deposition. Advanced Healthcare Materials, 2015, 4: 702–713.

33. Sridhar, B.V., et al., Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. Journal of Biomedical Materials Research Part A, 2014.

34. Stoichevska, V., et al., Engineering specific chemical modification sites into a collagen‐like protein from Streptococcus pyogenes, Journal of Biomedical Materials Research Part A., 2017.

35. Heffernan, J.M., et al., Bioengineered Scaffolds for 3D Analysis of Glioblastoma Proliferation and Invasion, Annals of Biomedical Engineering, 2015, Volume 43, Issue 8, pp 1965-1977.

36. Addington, C.P., et al., Enhancing neural stem cell response to SDF-1α gradients through hyaluronic acid-laminin hydrogels, Biomaterials, 2015, Volume 72, Pages 11-19.

37. Ma, Y., et al., Artificial microniches for probing mesenchymal stem cell fate in 3D, Biomater. Sci., 2014, 2, 1661.

Founded in 2001 by recognized experts in PEG synthesis and PEGylation, JenKem Technology specializes exclusively in the development and manufacturing of high quality polyethylene glycol (PEG) products and derivatives, and related custom synthesis and PEGylation services. JenKem Technology is ISO 9001 and ISO 13485 certified, and adheres to ICH Q7A guidelines for GMP manufacture. The production of JenKem® PEGs is back-integrated to on-site manufacturing from ethylene oxide, enabling facile traceability for GMP regulated customers. JenKem Technology caters to the PEGylation needs of the pharmaceutical, biotechnology, medical device and diagnostics, and emerging chemical specialty markets, from laboratory scale through large commercial scale.