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Magnetic drug targeting has been proposed asmeans of concentrating therapeutic agents at a target site and the
success of this approach has been demonstrated in a number of studies. However, the behavior of magnetic car-
riers in blood vessels and tumor microcirculation still remains unclear. In this work, we utilized polymeric mag-
netic nanocapsules (m-NCs) for magnetic targeting in tumors and dynamically visualized them within blood
vessels and tumor tissues before, during and after magnetic field exposure using fibered confocal fluorescence
microscopy (FCFM). Our results suggested that the distribution of m-NCswithin tumor vasculature changed dra-
matically, but in a reversibleway, upon application and removal of amagnetic field. Them-NCswere concentrat-
ed and stayed as clusters near a blood vessel wall when tumors were exposed to a magnetic field but without
rupturing the blood vessel. The obtained FCFM images provided in vivo in situ microvascular observations of
m-NCs upon magnetic targeting with high spatial resolution but minimally invasive surgical procedures. This
proof-of-concept descriptive study in mice is envisaged to track and quantify nanoparticles in vivo in a non-
invasive manner at microscopic resolution.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Magnetic drug targeting has been shown to be a promising method
of concentrating therapeutic agents at a target site, and allowing higher
drug doses to be administered while still being tolerated by patients
[1–3]. A number of studies have demonstrated that magnetic nanopar-
ticles (MNPs) can be magnetically targeted to tumor sites and the
targeting effect has been assessed by various techniques, including opti-
cal imaging, magnetic resonance imaging (MRI) and histology studies
(Prussian blue staining) [4–11]. These studies have suggested that a
higher concentration of magnetic therapeutic agents can be achieved
upon the application of an external magnetic field. However, the mag-
netic behaviors of MNPs in blood vessels and tumor microcirculation
have not been investigated. The above mentioned imaging methods
cannot offer sufficient resolution to show how MNPs travel through
blood vessels and accumulate in tumors, whereas histological studies
can only provide ex vivo information at post-mortem in a non-
dynamic way. Some studies have been carried out using ex vivo artery
models or mathematical simulation to characterize theMNPs behaviors
in blood vessels and/or surrounding tissues, but no in vivo studies have
been performed so far [12–15].
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Here we visualized the magnetic capture of magnetic polymeric
nanocapsules (m-NCs) within blood vessels and tumor tissues in real-
time in vivo before, during and after magnetic field exposure. The mag-
netic targeting efficacy of m-NCs was firstly quantified by gamma
counting and this was further confirmed by direct imaging of the mag-
netic targeting process in blood vessel on the microscopic scale. This
proof-of-concept descriptive study in mice is envisaged to track and
quantify nanoparticles in vivo in a non-invasive manner with micro-
scopic resolution.

2. Materials and methods

2.1. Materials

‘Ferrofluid’ magnetic oil (oleic acid-coated superparamagnetic iron
oxide nanoparticles (SPIONs) with diameter of 10 nm, suspended in
kerosene at 1017 particles per mL) was purchased from Magnacol Ltd.
(UK). Soybean lecithin (Epikuron 140 V) was a kind gift from
Cargill Pharmaceuticals (USA). Polyoxyethylene-bis-amine (NH2-
PEG3.5 kDa-NH2) was purchased from JENKEM (USA). D/L-lactide/
glycolide copolymer 75/25 (PLGA18 kDa-COOH) was purchased from
Purac Biomaterials (theNetherlands). Tween®80, nitric acid, methanol,
dimethylsulphoxide (DMSO) and dichloromethanewere obtained from
Fisher Scientific Ltd. (UK). Fluorescein isothiocyanate–dextran (FITC-
Dextran, average molecular weight 2000 kDa), sodium chloride,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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diethylene triamine pentaacetic acid (DTPA), castor oil, ethylenedi-
aminetetraacetic acid disodium salt dehydrate (EDTA) and Sephadex®
G-75 were purchased from Sigma Aldrich (UK). 1,1-
dioctadecyltetramethyl indotricarbocyanine Iodide (DiR) was obtained
from Cambridge Bioscience (UK). Advanced RPMI-1640 media,
penicillin-streptomycin 100×, 0.25% Trypsin-EDTA with phenol red,
Glutamax™ supplement, phosphate buffered saline PBS (10×, pH 7.4)
and phosphate buffered saline PBS (1×, pH 7.4) were obtained from
Gibco, Invitrogen (UK). Fetal bovine serum (FBS) was obtained from
First-Link Ltd. (UK). Pentobarbital sodium (Euthatal®) was obtained
from Merial (UK). PD-10 desalting column was obtained from GE
Healthcare Life Sciences (UK).
2.2. Preparation and characterization of m-NCs and m-NC-DiR

The magnetic polymeric nanocapsules (m-NCs) were prepared by
single emulsification/solvent evaporation method [1]. PLGA18 kDa-
PEG3.5 kDa-NH2 and PLGA18 kDa-PEG3.5 kDa-DTPAwere synthesized as de-
scribed in our previous work [16,17]. Briefly, PLGA18 kDa-PEG3.5 kDa-NH2

(12.5mg, 10%w/wPLGA18 kDa-PEG3.5 kDa-DTPAwas incorporated form-
NCs to be used for radiolabeling), castor oil (75 mg), soybean lecithin
(25 mg) and increasing amounts of SPIONs (0, 0.5, 2.5 or 10 mg) were
dissolved in 2.5 mL dichloromethane. DiR was incorporated into m-
NCs formulation at 0.5% w/w DiR/castor oil for fibered confocal fluores-
cence microscopic (FCFM) imaging. The organic phase was poured into
an aqueous phase (5 mL) containing Tween® 80 (20 mg) as a hydro-
philic surfactant. The resultant dispersion was emulsified by ultra-
sonication using a probe sonicator (Soniprep 150, UK) at 15 μ amplitude
for 180 s in an ice bath. Organic solvents were then evaporated in a
chemical fume hood for 20 min. The final volume of the m-NC suspen-
sion was adjusted to 5 mL. The obtainedm-NC suspension was concen-
trated using a rotary evaporator (Buchi, Switzerland) by 10 (FCFM
imaging) or 20 times (gamma counting), yielding 25 and 50 mg/ml of
polymer, respectively.
2.3. Size and zeta potential measurements

The hydrodynamic size (Z-Average), polydispersity index (PDI) and
zeta potential of NCs and m-NCs were determined by NanoZS (Malvern
Instrument, UK) at 25 °C using disposable square polystyrene cuvettes
(for size and PDI) or disposable capillary cells (for zeta potential)
(Malvern Instrument, UK). The Z-Average diameter and polydispersity
index were measured in water and presented as the average value of
three measurements, with 15 runs within each measurement. The
zeta potential was alsomeasured in water and presented as the average
value of three measurements, with 20–25 runs within each measure-
ment. The mean and standard deviation (SD) of size and zeta potential
were calculated for each sample.
2.4. Determination of SPION encapsulation efficiency in m-NCs

m-NCs were prepared with increasing loadings of SPIONs (0, 0.38,
1.84 and 7.02% w/w SPION/NC) and purified by size exclusion chroma-
tography (Sephadex® G-75 column, size exclusion chromatography) to
remove any un-encapsulated SPIONs. The Fe content was determined
by inductively couple plasma mass spectrometry (ICP-MS, Perkin
Elmer SCIEX ICP mass spectrometer, ELAN DRC 6100, USA). For ICP-
MSmeasurements, Fe standards (Leeman Labs Inc., USA)were prepared
in 20% nitric acid to obtain a standard curve in the range of 10–10,000
parts per billion with respect to Fe. m-NCs were digested in 2 mL of ni-
tric acid in Falcon™ 15 mL conical centrifuge tubes (Fisher Scientific,
UK) and incubated overnight at 50 °C. The resulting solutionwas diluted
by 10 times with water before the measurements.
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2.5. Determination of DiR encapsulation efficiency in m-NCs

The encapsulation efficiency of DiR in m-NCs was assessed using a
UV/fluorescence spectrometer (Varian, Cary Eclipse, Australia). Prior
to quantification, m-NC-DiR suspensions were purified by a PD-10
desalting column (size exclusion chromatography) and eluted in PBS
buffer to remove any free DiR. The m-NC suspensions before and after
purification were diluted in DMSO (1/19, v/v) to rupture the NC struc-
ture. The excitation/emission wavelengths for the detection of DiR
were 740/785 nm. The encapsulation efficiency was expressed as the
percentage of the encapsulated dye to the total amount of DiR added
to the formulation. All measurements were performed in triplicate
and expressed as mean ± SD (n = 3).

2.6. Radio-labelling of m-NCs and serum stability studies

To radio-label them-NCswith indium-111, m-NCswere prepared as
described in the previous section except that PLGA18 kDa-PEG3.5 kDa-
DTPA was included at 10% (w/w) of the total polymer content. The m-
NC suspension (250 μL, 50 mg/mL of polymer) was incubated with
2 M ammonium acetate (one ninth of the reaction volume, pH 5.5), to
which 1 MBq of 111InCl3 (Mallinckrodt, UK) was added for gamma
counting. The reaction was kept at room temperature for 30 min with
intermittent vortexing every 10 min. Upon completion, the radio-
labelling reactionwas quenchedby the addition of 0.1MEDTA chelating
solution (one twentieth of the reaction volume). 111InCl3 alonewas sub-
jected to the same labelling reaction conditions and used as a control.

Them-NC-111Inwas passed through PD-10 columns before injecting
into animals to exchange the ammonium acetate buffer (pH 5.5) with
PBS (pH 7.4) and remove free 111In-EDTA. The m-NCs-111In (~150 μL
per injection dose, 25 mg/mL of polymer) were collected from the col-
umn and spotted on instant thin layer chromatography (iTLC) strips
which were then developed in 0.1 M ammonium acetate containing
50 mM EDTA as a mobile phase. Strips were allowed to dry before
being developed and counted quantitatively using a cyclone phosphor
detector (Packard Biosciences, UK) to ensure no free 111In-EDTApresent
in the injected solution.

2.7. Animal studies and tumor inoculation

All animal experiments were performed in compliance with the UK
Home Office (1989) Code of Practice for the Housing and Care of Ani-
mals used in Scientific Procedures. CT26 murine colon carcinoma cells
(CT26, ATCC®, CRL-2638TM)were cultured in Advanced RPMI (Roswell
Park Memorial Institute) 1640 medium supplemented with 1% L-gluta-
mine, 1% penicillin-streptomycin and 10% fetal bovine serum (FBS), in
5% CO2 and 95% air, at 37 °C. The harvested CT26 cells were suspended
in PBS solution (pH 7.4). A total of 1 × 106 cells in 20 μL were injected
subcutaneously and bifocally at the hind foot of female BALB/c mice
aged 4–6 weeks (Harlan, UK). After inoculation, the tumor volume
was measured on day 8 and then every other day using a digital caliper
and calculated using Eq. (1) [2]

Tumor volume mm3� � ¼ 4=3ð Þ � π A=2ð Þ2 � B=2ð Þ ¼ 0:52A2B ð1Þ

where A and B represent thewidth and the length of the tumors, respec-
tively. All experiment were carried out (m-NCs administration) when
the tumor volume reached approximately 500 mm3.

2.8. Magnetic targeting setup in vivo

Disk-shaped nickel-coated neodymium iron boron (Nd2Fe14B) mag-
nets (Magnet Expert Ltd., Tuxford, UK) were used for the in vivo mag-
netic drug targeting studies. That was an 8 mm diameter, 5 mm thick,
N42 grade magnet (product code F324), which had a reported field
strength of 0.43 Tesla (T) and a reported ‘vertical pull’ parameter (a
g targeting using fibered confocal fluorescencemicroscopy, J. Control.
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Table 1
Physicochemical characterization of PEGylatedm-NCs with different SPION loadings pre-
pared by a single emulsification/solvent evaporation method.

Formulation Hydrodynamic
size (nm)[a], [e]

PDI[a], [e] Zeta potential
(mV)[b], [e]

SPION
EE%[c], [e]

Final SPION
loading[d], [e]

NC 1 203 ± 4 0.12 ± 0.01 −45 ± 2 — 0.00
NC 2 212 ± 2 0.17 ± 0.02 −38 ± 1 99 ± 3 0.08 ± 0.01
NC 3 218 ± 4 0.17 ± 0.02 −39 ± 1 99 ± 2 0.38 ± 0.01
NC 4 205 ± 3 0.16 ± 0.01 −36 ± 1 95 ± 3 1.76 ± 0.06
NC 5 214 ± 9 0.19 ± 0.02 −31 ± 1 94 ± 9 6.60 ± 0.63

a Size was measured with dynamic light scattering and measured in deionized water
b Values were obtained with laser Doppler electrophoresis and measured in deionized

water
c Iron content was determined by ICP-MS
d Weight of NCs includes polymer, lecithin, castor oil, SPION and tween 80®. Initial and

final loading refers to SPION content before and after size exclusion chromatography.
e Results are expressed as mean ± SD (n = 3)
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measure of the mass of material that the magnet could lift) of 1.9 kg.
Single magnet was placed non-invasively over the surface of one of
the bifocal tumors immediately after m-NCs administration and
retained using surgical tapes. The contralateral tumorwas used as an in-
ternal negative control where no magnet was applied. The magnet was
then removed at 1 h post-injection of m-NCs.

2.9. Fibered confocal fluorescence microscopic imaging studies

The visualisation of m-NCs in tumor vasculature in vivo upon the ap-
plication of a magnetic field was performed using a fibered confocal
fluorescence microscopy (FCFM) imaging system (Cellvizio®, Mauna
Kea Technologies, Paris, France). CT26 tumor-bearing BALB/c mice
were injected via a tail vein with m-NC-DiR with a SPION content of
125 mg/kg and DiR content of 9.4 mg/kg (corresponding to
312.5 mg polymer/kg). FITC-Dextran (MW 2000 kDa, 500 mg/kg,
150 μL) was injected intravenously immediately prior to FCFM imaging
to visualize the microvascular network. A small incision (~0.5 cm) was
made on tumor and muscle to insert the laser probe. The exposed tis-
sues were kept moist with PBS pre-warmed to 37 °C. During the time
of acquisition, mice were placed in the prone position (for tumor and
muscle imaging) or supine position (for liver imaging) and anesthetized
with 1.5% isoflurane/98.5% oxygen. Body temperaturewas controlled by
a probe-coupled heatingmat. Images and videoswere acquired using an
S-1500 probewith a penetration depth of 15 μmbelow tissue surface. To
image m-NCs in the tumor vasculature upon exposure to a magnetic
field in real-time, a set of magnets (10 disk magnets, 0.43 T, product
code F324, Magnet Expert Ltd., Tuxford, UK) was placed adjacent to
the surgical incision for 10 min. FCFM imaging was performed before,
during and after application of a magnetic field. Extravasation of the
m-NCs through blood vessel wall and accumulation over time were
also assessed in tumor (TU+ and TU−), quadriceps femoris muscle
and liver at 1, 4 and 24 h post-injection. All imaging was carried out
using a frame rate of 9 Hz (full FOV), a field of view of 618 × 609 μm
and 100% laser power at 488 and 660 nm. Images and videos were ana-
lyzed using Cellvizio® dual viewer (Mauna Kea Technologies, Paris,
France) and videos were reconstructed using ImageJ software. The fluo-
rescence intensity of the signals fromDiR and FITCwas quantified using
ImageJ software.

2.10. Assessment of blood circulation, organ biodistribution and tumor ac-
cumulation profiles of m-NCs by gamma counting

Blood circulation, organ biodistribution and tumor accumulation
profiles of m-NC-111In with increasing SPION contents (0, 5, 25 and
125 and 500 mg/kg), referred to as NC 1, NC 2, NC 3, NC 4 and NC 5, re-
spectively, were assessed quantitatively in CT26 tumor-bearing BALB/c
mice using gamma counting. Mice were injected intravenously via tail
vein with ~0.7 MBq m-NC-111In (150 μL in PBS). Magnetic targeting
was applied as described in 2.8. Blood samples (5 μL) were collected
from the tail vein at 10 min, 30 min, 1 h, 4 h and 24 h post-injection.
Liver, spleen, magnetically-targeted tumors (TU+) and non-
magnetically targeted tumors (TU−) were excised and weighed. The
radioactivity was measured by a gamma counter (1280 CompuGamma
Universal Gamma Counter, LKB Wallac, Finland), using the appropriate
energy windows for 111In. Results were expressed as percentage of
injected dose (% ID) in blood or per gram organ or tumor (% ID/g) as
means ± SEM (standard error of the mean) (n = 3).

2.11. Statistical Analysis

The statistical analysis for each experiment is noted in the figure
caption. The One-way ANONA and Tukey’s multiple comparison test
were performed for the gamma counting studies, including organ
biodistribution, blood circulation and tumor accumulation studies.
Student’s t-test was performed for the FCFM quantification studies. All
Please cite this article as: J. Bai, et al., Real-timemonitoring of magnetic dru
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statistical tests were performed using IBM SPSS version 20. The signifi-
cance (p-value) was determined. When p-values were 0.05 or less,
differences were considered statistically significant.

3. Results and discussion

3.1. Preparation and characterization of magnetic nanocapsules (m-NCs)

We designed a magnetic nanocapsule system (m-NCs) encapsulat-
ing a high amount of superparamagnetic iron oxide nanoparticles
(SPIONs) which enables successful magnetic drug targeting in vivo.
The m-NCs were designed in such a way that they can be imaged with
optical imaging (due to DiR incorporation), MR imaging (due to
SPION) and nuclear imaging (by chelation of radioactive indium-111
(111In) to diethylene triamine pentaacetic acid (DTPA) conjugated to
the polymer). These triple-labeled m-NCs combined with imaging
techniques such as SPECT/CT and FCFM allowed us to examine the
kinetics ofm-NCs accumulation/extravasation inmice organs, including
tumors, on a microscopic scale when an external magnetic field was
applied.

PEGylated oil-coredm-NCs were prepared using a single emulsifica-
tion/solvent evaporation method. [16] DiR was encapsulated into
the m-NCs for FCFM imaging. m-NCs of increasing SPION loadings: ca.
0-7% w/w SPION/NC were prepared and named as NC 1-5, respectively,
were prepared. DiR/SPION encapsulation efficiency (%EE), hydrody-
namic sizes (200 to 220 nm) and zeta potentials (−30 to −45 mV)
are summarized in Table 1 and Table 2.

3.2. The correlation between m-NC tumor accumulation and SPION injec-
tion dose under passive and magnetic targeting conditions

We firstly assessed the blood circulation time of m-NCs with an in-
creasing amount of SPIONs, their uptake in reticuloendothelial system
(RES) organs (e.g. liver and spleen), and the tumor accumulation in
the presence (TU+) or absence (TU-) of amagnetic field in a subcutane-
ous CT26 (murine colon carcinoma) tumor model. These m-NCs were
radio-labeled with 111In and their concentrations in blood and tumors
weremeasured by gamma counting. Fig. 1a shows the percentage injec-
tion dose (% ID) of m-NCs accumulated in the tumor (per gram of
tumor) (+/- magnetic field), at 24 h post-injection, against increasing
doses of injected SPIONs in m-NCs. The tumor accumulation was not
affected by increasing the SPION injection dose up to 125 mg/kg (NC
4, ca. 2% w/w) in the absence of a magnetic field (blue line TU-, r2 =
0.7872, p = 0.1127). On the other hand, a linear regression between %
ID/g and Ln (SPION dose mg/kg) (red line TU+, r2 = 0.9338, p =
0.0337) was observed from NC 1-4 when a magnetic field was applied.
The statistical analysis of the linear regression is provided in Table S1.
The good regression between these two parameters indicates the mag-
netic force was able to influence the tumor uptake and the
g targeting using fibered confocal fluorescencemicroscopy, J. Control.
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Table 2
Physicochemical characterization of PEGylatedDiR encapsulatedNCs andm-NCs prepared
by a single emulsification/solvent evaporation method.

Formulation[a] Hydrodynamic size
(nm)[b], [e]

PDI [b], [e] Zeta potential
(mV)[c], [e]

DiR
EE%[d], [e]

NC-DiR 206 ± 5 0.16 ± 0.01 -39 ± 2 99 ± 4
m-NC-DiR 209 ± 2 0.19 ± 0.02 -32 ± 1 95 ± 5

a Formulations were prepared based on NC 4
b Size was measured with dynamic light scattering and measured in deionized water
c Values were obtained with laser Doppler electrophoresis and measured in deionized

water
d Values were determined by fluorescence spectroscopy
e Results are expressed as mean ± SD (n = 3)
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enhancement of tumor uptake was proportional to the natural loga-
rithm of the injected SPION dose. A significant reduction in tumor up-
take was observed when mice were injected with NC 5 with the
highest SPION content (ca. 7% w/w, 500 mg/kg). Fig. 1b and c show
their blood concentration over time and %ID/g in liver and spleen at
24 h. The high uptake of NC 5 in RES organs correspondedwell to the re-
duced blood circulation timewhichmay lead to its lowered tumor accu-
mulation [18].

3.3. Live fibered confocal fluorescence microscopic imaging of m-NCs in
tumor blood vessel under the influence of a magnetic field

The investigation of the effect of magnetic forces on m-NC accumu-
lation kinetics in the tumor vasculature is limited by the imaging resolu-
tion and invasiveness. As a result, to visualize it dynamically on a
microscopic vascular level, a fibered confocal fluorescence microscopy
system (FCFM, Cellvizio®, Mauna Kea Technology, Paris, France) was
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R² = 0.9338, p = 0.0337

y = 0.1346x + 2.1834
R² = 0.7872, p = 0.1127

0

2

4

6

8

0 1 2 3 4 5 6 7

%
 ID

/g
 t

u
m

o
r

Ln (SPION dose mg/kg)

TU+

TU-

liver
0

10

20

30
NC 1
NC 2
NC 3
NC 4
NC 5

%
ID

/g
 o

f o
rg

an

c

**

a
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used in this study. Non-magnetic NCs (used as a negative control) and
m-NCswere fluorescently labeled with DiR as an optical probe. Fluores-
cein isothiocyanate–dextran (FITC-Dextran), used as a vascular contrast
agent, remained in the blood vessels and no leakage up to 1 h has been
reported. Mice were inoculated bi-focally with subcutaneous tumors.
The imaging laser probe was inserted into the tumors via a small
incision and tissues were keptmoist throughout the experiment. To dy-
namically image the travelling of the m-NCs in blood vessels, the FCFM
was performed before, during and after the magnetic exposure. The
imaging protocol is schematically presented in Fig. 2a.

Prior to application of a magnetic field, DiR-labeled non-magnetic
NCs were observed homogenously distributed in blood vessels
(Fig. 2b, left panel; Supplementary Movie 1a–c). The application of a
magnetic field did not cause any changes in the distribution of non-
magnetic NCs within the blood vessels. m-NCs, on the other hand, be-
haved differently when a set of magnets was applied in close proximity
to the vessels. DiR labeled m-NCs started to magnetize, and those mag-
netized sufficiently appeared as clusters and enriched near the blood
vessel wall (Fig. 2b, right panel; Supplementary Movie 1d–f). The m-
NC aggregation was reversible upon removal of the magnetic field due
to the superparamagnetism of m-NCs [1,2,19]. More importantly, the
blood vessels appeared intact with no observation of vessel leakage of
FITC-Dextran induced by the application of the magnetic field, suggest-
ing no vascular damage per se. The enrichment of m-NCs within the
tumor microvasculature or further enhanced retention in blood vessels
would raise the probability of extravasation into the tumor interstitium
and thereby increase tumor uptake.

The m-NC distribution in both TU− and TU+ over time was also
studied using FCFM. The multiple imaging schedule is shown in
Fig. 3. m-NCs were injected at 0 h and a magnetic field was then ap-
plied to one tumor for 1 h. Multiple imaging was performed at 1, 4
spleen
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and 24 h. Tumors are heterogeneous and contain irregular capillary
networks and non-vascularized areas of necrosis [20–22]. FCFM im-
aging was performed focusing on the highly vascularized regions.
Fig. 3. Experimental timeline of fibered confocal fluorescence microscopic (FCFM) imaging of
bearing BALB/c mice were injected intravenously with m-NC-DiR and a magnet was applied o
24 h post-injection in both TU+ and TU-. Non-previously injected mouse was used for each t
imaging time point as a macromolecular contrast agent. Inset (top) shows the dynamic FCF
interaction of m-NCs and MF on a microscopic scale.
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FCFM images showed clear co-localization of FITC-Dextran and m-
NC-DiR in tumor blood vessels at 1 h and 4 h, confirming the
prolonged blood circulation of m-NCs (Fig. 4a) [16]. As expected,
m-NCs in tumor vasculature under the influence of a magnetic field (MF). CT26 tumor-
nly at one of the bifocal tumors (TU+) for 1 h. FCFM imaging was performed at 1, 4 and
ime point. FITC-Dextran was injected intravenously at a dose of 500 mg/kg prior to each
M imaging of m-NCs in tumor blood vessels during MF application to demonstrate the

g targeting using fibered confocal fluorescencemicroscopy, J. Control.
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Fig. 4. Fibered confocal fluorescencemicroscopic (FCFM) images ofm-NCs in tumor tissues over time after the application of themagneticfield.m-NC-DiRwere injected intravenously into
CT26 tumor-bearing BALB/cmice and imagedwith FCFMusing FITC-Dextran as the vascular contrast agent. Amagnetic fieldwas taped at one of tumor surface (TU+) for 1 h and removed
afterwards. The contralateral tumor (TU-)wasused as a control. (a) Representative single frameFCFM images ofm-NCs in TU- and TU+at 1, 4 and 24h post-injection. (b)Quantification of
the fluorescence intensity of m-NC-DiR in TU- and TU+. Values are expressed as the ratio of fluorescence intensity from DiR and FITC as mean ± SD (n=3). Paired student t-test was
performed using IBM SPSS version 20 (*p b 0.05).

6 J. Bai et al. / Journal of Controlled Release xxx (2016) xxx–xxx
DiR signals became more diffuse and spread out throughout the
tumor interstitium at 24 h. The overall fluorescence intensity of
signals from m-NC-DiR and FITC-Dextran in TU+ and TU- was
quantified. The intensity ratios of DiR/FITC were used to compare
the accumulation of m-NC-DiR in TU+ and TU and the obtained
results are shown in Fig. 4b. Interestingly, higher fluorescence inten-
sity ofm-NC-DiR (higher DiR/FITC ratio) was seen in TU+ compared
to TU- at 24 h, suggesting enhanced tumor accumulation upon
magnetic targeting, consistent with our previously published work
[16].
3.4. Real-time fibered confocal fluorescence microscopic imaging of m-NCs
extravasation in healthy tissues

The extravasation of m-NCs were also assessed in healthy tissues to
validate the usefulness for real-time nanoparticle imaging. Muscle and
liver which exhibit distinct vascular characteristics were used as exam-
ples [23]. Fig. 5 (left panel) shows muscle blood vessels. No DiR signal
was visible in the blood vessels of muscle tissues at 24 h, in contrary
to the 1 h time point where m-NCs were seen in the vasculature. This
is consistent with m-NC distribution data, where no m-NC retention
was seen in muscle at 24 h, due to the continuous capillaries and com-
plete basementmembrane [16,24,25]. It was also confirmed that DiR la-
belling was confined to the m-NCs and the dye did not translocate to
cellular membrane. In contrast, a number of m-NCs leaked out of the
liver sinusoids and accumulated in non-vascular liver tissues at 24 h
(Fig. 5, right panel), consistent with gradual liver accumulation over
time described in our previously published work [16]. This was not
Please cite this article as: J. Bai, et al., Real-timemonitoring of magnetic dru
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surprising as the liver vasculature has an incomplete basement mem-
brane and transcytoplasmic openings [25].

It is conceivable from experimental physics and prior knowledge
that magnetic nanoparticles (MNPs) can be attracted by the magnetic
forces in tumor blood vessel and be concentrated to the tumor tissue.
A number of studies indeed have demonstrated that MNPs could be
concentrated in the tumor under the influence of a magnetic field by
MRI [5,11]. However, MRI cannot provide sufficient resolution to
image the MNP in tumor vasculature. Whether or not the magnetic
forces acting on individual m-NC is strong enough to overcome blood
flow has not been addressed. A direct visualisation in a time-course
study is required.

The FCFM provides real-time in vivomicrovascular observations and
in situ high spatial resolution imaging (up to 1.4 μm) at vascular level. It
also represents a significant advantage over traditional intra-vital mi-
croscopic imaging (IVM)whichusually requires invasive surgical proce-
dures and is limited by the availability of animal models that bear
visually accessible tumors in a dorsal skinfold chamber. FCFM enables
micro-invasiveness and requires only a small incision at the imaging
site. Small openings can be sutured if the animals are required to be
kept for long-term studies.

4. Conclusion

A number of studies have exploredmagnetic targeting in drug deliv-
ery. However, this is thefirst report of real-time live imaging ofmagnet-
ic targeting in tumor vasculature on the microscopic scale. The novel
application of FCFM described in this study offers direct visualisation
of m-NCs within blood vessels and in tumor tissues before, during and
g targeting using fibered confocal fluorescencemicroscopy, J. Control.
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Fig. 5. Real-time fibered confocal fluorescencemicroscopic (FCFM) images of m-NCs inmuscle and liver.m-NC-DiRwere injected intravenously into CT26 tumor-bearing BALB/cmice and
imagedwith FCFMusing FITC-Dextran as the vascular contrast agent. Representative single frame FCFM images ofm-NC inmuscle and liver tissues at 1, 4 and 24 h post-injectionwith the
application of a magnetic field at the tumor. All images were acquired using the Cellvizio® dual band imaging system. Scale bar is 50 um.
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after magnetic field exposure in a real-time manner, with high resolu-
tion and minimal surgical intervention. Our results suggested that the
distribution of m-NCs within tumor vasculature changed dramatically,
but in a reversible way, upon application and removal of a magnetic
field. The m-NCs were concentrated and stayed as clusters near a
blood vessel wall when tumors were exposed to a magnetic field but
without rupturing the blood vessel. This work bridges the gap between
previous findings of enhanced tumor uptake with magnetic targeting
and the nanocarrier behavior at the blood-tumor vasculature-tumor tis-
sue interface, thanks to the high resolution characteristics of this imag-
ing modality. This proof-of-concept descriptive study in mice is
envisaged to track and quantify nanoparticles in vivo in a non-invasive
manner with microscopic resolution.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.jconrel.2016.07.026.
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